HCC MATH DAYS

Answers to the Math 1314 Final Exam Review

Exercise 1:

(a) x = -7 or $x = \frac{7}{3}$ (b) $x = \frac{1}{2}$ (c) n = -7 or n = 9 (d) $m = -\frac{1}{5}$ or $m = -\frac{5}{2}$

Exercise 2:

(a)
$$x = \pm \sqrt{\frac{17}{16}} = \pm \frac{\sqrt{17}}{4}$$

(b) $k = -6 \pm 2\sqrt{7}$
(c) $x = \pm 2i$

Exercise 3:

(a)
$$n = 121 \Rightarrow p^2 + 22p + 121 = (p+11)^2$$

(b) $n = \frac{361}{4} \Rightarrow u^2 - 19u + \frac{361}{4} = \left(u - \frac{19}{2}\right)^2$
(c) $n = \frac{1}{9} \Rightarrow x^2 - \frac{2}{3}x + \frac{1}{9} = \left(x - \frac{1}{3}\right)^2$

Exercise 4:

(a) $x = -7 \pm 3 \sqrt{6}$	(b) $m = -3 \pm \sqrt{1033}$	(a) $u = 1 \pm \sqrt{15}$
(a) $x = -7 \pm 5\sqrt{0}$	(b) $x = \frac{16}{16}$	(c) $y = -1 \pm \frac{1}{2}$

Exercise 5:

(a)
$$x = \frac{-3 \pm \sqrt{7}}{2}$$
 (b) $x = \frac{5 \pm i\sqrt{35}}{6}$

Exercise 6: x = 1

Exercise 7:

(a)
$$r = \frac{\sqrt{A\pi h}}{\pi h}$$
 (b) $w = \frac{c + \sqrt{c^2 + 4kr}}{2k}$ or $w = \frac{c - \sqrt{c^2 + 4kr}}{2k}$

Exercise 8:

(a) $x = -\frac{1}{2}$ or x = -1. Therefore, the sum of the solutions is $-\frac{3}{2}$. (b) x = 3 or x = 11. Therefore, the sum of the solutions is 14.

Exercise 9: P = 44 yds.

Exercise 10: Shortest Leg: x = 10 Long Leg: x = 24 Hypotenuse: x = 26

Exercise 11: x = 27 or $x = -\frac{27}{64}$. Hence, the product of the solutions is $-\frac{729}{64}$.

Exercise 12: The solution set is $\{1, 2, 4, 5\}$. Hence, the product of the solutions is 40.

Exercise 13:

(a) $x = \frac{19}{8}$ or $x = -\frac{13}{8}$. Hence, the sum of the solutions is $\frac{3}{4}$. (b) $x = \frac{5}{4}$ or $x = -\frac{13}{6}$. Hence, the sum of the solutions is $-\frac{11}{12}$.

Exercise 14:

(a) $\left(-\infty, \frac{8}{5}\right) \cup (4, \infty)$ (b) $\left(-\infty, \frac{8}{5}\right) \cup (4, 15)$ (c) $(-\infty, 15) \cup (26, \infty)$

Exercise 15:

(a) $\left(-\infty, -\frac{12}{5}\right] \cup \left[\frac{36}{5}, \infty\right)$ (b) $\left(-\frac{1}{4}, \frac{19}{4}\right)$

Exercise 16:

(a) distance = $\sqrt{194}$ (b) midpoint = $\left(\frac{1}{2}, -\frac{3}{2}\right)$

Exercise 17:

Standard Form: $(x + 4)^2 + (y - 5)^2 = 16$ Center = (-4, 5), Radius = 4

Exercise 18:

Standard Form: $(x+6)^2 + (y-6)^2 = 25$ Center = (-6,6), Radius = 5

Exercise 19:

(a)
$$y = -5x + 28$$
 (b) $y = \frac{2}{5}x + 1$ (c) $y = -\frac{5}{6}x + \frac{43}{6}$

Exercise 20:

(a) $(-\infty, -3) \cup (-3, \infty)$ (b) $(-3, \infty)$ (c) $(-\infty, -3) \cup (-3, \infty)$ Exercise 21: (a) odd (b) even (c) neither

Exercise 22:

(a)	y-axis
(0)	9 01110

(c) none of these

(d) x-axis, y-axis, and the origin

- Created/Revised the Math Department

(b) x-axis

Math 1314, Final Exam Review – Key

Exercise 23: (a) 33 (b)
$$-6$$
 (c) 62

Exercise 24: A = -6, B = 9

Exercise 25:

Dimensions of the single coop: x = 15 ft, y = 30 ft, Single coop Area = $450 ft^2$

Exercise 26:

(a) Left-End Behavior: Up Left,	Right-End Behavior: Down Right
(b) Left-End Behavior: Up Left,	Right-End Behavior: Up Right
(c) Left-End Behavior: Down Left,	Right-End Behavior: Down Right

Exercise 27: $f(x+1) = x^2 - x + 3$

Exercise 28: 2x + h - 3

Exercise 29: $(fg)(x) = \frac{-1}{x-5}$, $x \neq 1$ and $x \neq -5$

Exercise 30: $\frac{13}{4}$

Exercise 31: (a) $(f \circ g)(x) = 6x^2 - 37x + 58$ (b) $(g \circ f)(x) = 6x^2 - x - 2$

Exercise 32:

Starting with the graph of g, translate 2 units to the right and then translate 5 units up.

In other words, the graph of f is obtained from the graph of g by the following successive transformations: 1. Shift the graph of $g(x) = x^2$ two units to the right (obtaining $g(x-2) = (x-2)^2$).

2. Shift the graph of $g(x-2) = (x-2)^2$ five units up (obtaining $f(x) = g(x-2) + 5 = (x-2)^2 + 5$).

Exercise 33:

 $f(x) = a(x+1)(x-2)(x^2-2x+5)$ where a is any nonzero real number (We may take a = 1, if desired.).

Exercise 34:

Possible Rational Zeros: ± 9 , $\pm \frac{9}{2}$, $\pm \frac{9}{4}$, ± 3 , $\pm \frac{3}{2}$, $\pm \frac{3}{4}$, ± 1 , $\pm \frac{1}{2}$, $\pm \frac{1}{4}$ Zeros of f: -1, $\frac{3}{4}$, and 3 Factored form: f(x) = (x+1)(4x-3)(x-3)

Math 1314, Final Exam Review - Key

Exercise 35: Possible Rational Zeros: ± 2 , $\pm \frac{2}{3}$, $\pm \frac{1}{3}$, ± 1 , $\pm \frac{1}{2}$, $\pm \frac{1}{6}$ **Exercise 36**: m = -4

Exercise 37: 18

Exercise 38:

(a) Vertical Asymptotes: $x = 5$ and $x = -5$	Horizontal Asymptote: $y = 0$
(b) Vertical Asymptote: $x = -\frac{12}{5}$	Horizontal Asymptote: $y = \frac{3}{5}$
(c) Vertical Asymptote: $x = -1$	Horizontal Asymptote: None

Exercise 39:

x = 0, Multiplicity: 1 x = 1, Multiplicity: 4 x = -3, Multiplicity: 2

Exercise 40: $k = \frac{135}{16}$

Exercise 41: (a) $f^{-1}(x) = \frac{5-x}{12}$ (b) $f^{-1}(x) = \sqrt[3]{x-4} + 1$

Exercise 42: $-\frac{7}{4}$

Exercise 43: $3x^3 + 6x^2 + 7x + 29 + \frac{60}{x-2}$

Exercise 44: $3x^2 - 2x + 4 + \frac{9x + 14}{x^2 - 3}$

Exercise 45:

Solutions: $\left(-8, -\frac{11}{2}\right)$ and (5, 1)

Hence, the sum of the x-coordinates of the solutions is -3 and the product of the y-coordinates of the solutions is $-\frac{11}{2}$.

Math 1314, Final Exam Review - Key

Exercise 46:

Solution: (-1, 3, -5)Hence, the sum of the coordinates of the solution is S = x + y + z = -3.

Exercise 47: $\log_3(r) + \frac{1}{3}\log_3(a) + \frac{1}{3}\log_3(b) - 5\log_3(c)$

Exercise 48:

 $x = 8^{1/B}$ There are many values of B that one may choose, namely B = 1, or B = 3, or $B = \frac{3}{2}$, or $B = \frac{5}{2}$, ...

Exercise 49:

Domain: $(-3, \infty)$ Range: $(-\infty, \infty)$ Vertical Asymptote: x = -3

Exercise 50: m = 5

Exercise 51:

(a) Solution Set = $\{4\}$.	Sum of solutions $= 4$.
(b) Solution Set $= \{6, 8\}.$	Sum of solutions $= 14$.

Exercise 52:

(a) Solution Set =
$$\left\{\frac{-2 - \ln(2)}{3}\right\}$$
.
(b) Solution Set = $\left\{\frac{\ln(12) - 2\ln(7)}{\ln(343)}\right\}$.

Exercise 53: x = -12

Exercise 54: $x = \frac{1}{4}$

Exercise 55: $\begin{bmatrix} 17 & 30 \\ -23 & -9 \end{bmatrix}$