Answers to the Math 1314 Final Exam Review

Exercise 1:

(a) $x=-7$ or $x=\frac{7}{3}$
(b) $x=\frac{1}{2}$
(c) $n=-7$ or $n=9$
(d) $m=-\frac{1}{5}$ or $m=-\frac{5}{2}$

Exercise 2:

(a) $x= \pm \sqrt{\frac{17}{16}}= \pm \frac{\sqrt{17}}{4}$
(b) $k=-6 \pm 2 \sqrt{7}$
(c) $x= \pm 2 i$

Exercise 3:

(a) $n=121 \Rightarrow p^{2}+22 p+121=(p+11)^{2}$
(b) $n=\frac{361}{4} \Rightarrow u^{2}-19 u+\frac{361}{4}=\left(u-\frac{19}{2}\right)^{2}$
(c) $n=\frac{1}{9} \Rightarrow x^{2}-\frac{2}{3} x+\frac{1}{9}=\left(x-\frac{1}{3}\right)^{2}$

Exercise 4:

(a) $x=-7 \pm 3 \sqrt{6}$
(b) $x=\frac{-3 \pm \sqrt{1033}}{16}$
(c) $y=-1 \pm \frac{\sqrt{15}}{2}$

Exercise 5:

(a) $x=\frac{-3 \pm \sqrt{7}}{2}$
(b) $x=\frac{5 \pm i \sqrt{35}}{6}$

Exercise 6: $x=1$

Exercise 7:

(a) $r=\frac{\sqrt{A \pi h}}{\pi h}$
(b) $w=\frac{c+\sqrt{c^{2}+4 k r}}{2 k}$ or $w=\frac{c-\sqrt{c^{2}+4 k r}}{2 k}$

Exercise 8:

(a) $x=-\frac{1}{2}$ or $x=-1$. Therefore, the sum of the solutions is $-\frac{3}{2}$.
(b) $x=3$ or $x=11$. Therefore, the sum of the solutions is 14 .

Exercise 9: $P=44$ yds.

Exercise 10: Shortest Leg: $x=10 \quad$ Long Leg: $x=24 \quad$ Hypotenuse: $x=26$

Math 1314, Final Exam Review - Key
Exercise 11: $x=27$ or $x=-\frac{27}{64}$. Hence, the product of the solutions is $-\frac{729}{64}$.

Exercise 12: The solution set is $\{1,2,4,5\}$. Hence, the product of the solutions is 40 .

Exercise 13:

(a) $x=\frac{19}{8}$ or $x=-\frac{13}{8}$. Hence, the sum of the solutions is $\frac{3}{4}$.
(b) $x=\frac{5}{4}$ or $x=-\frac{13}{6}$. Hence, the sum of the solutions is $-\frac{11}{12}$.

Exercise 14:

(a) $\left(-\infty, \frac{8}{5}\right) \cup(4, \infty)$
(b) $\left(-\infty, \frac{8}{5}\right) \cup(4,15)$
(c) $(-\infty, 15) \cup(26, \infty)$

Exercise 15:

(a) $\left(-\infty,-\frac{12}{5}\right] \cup\left[\frac{36}{5}, \infty\right)$
(b) $\left(-\frac{1}{4}, \frac{19}{4}\right)$

Exercise 16:

(a) distance $=\sqrt{194}$
(b) midpoint $=\left(\frac{1}{2},-\frac{3}{2}\right)$

Exercise 17:

Standard Form: $(x+4)^{2}+(y-5)^{2}=16$
Center $=(-4,5), \quad$ Radius $=4$

Exercise 18:

Standard Form: $(x+6)^{2}+(y-6)^{2}=25$
Center $=(-6,6), \quad$ Radius $=5$

Exercise 19:

(a) $y=-5 x+28$
(b) $y=\frac{2}{5} x+1$
(c) $y=-\frac{5}{6} x+\frac{43}{6}$

Exercise 20:

(a) $(-\infty,-3) \cup(-3, \infty)$
(b) $(-3, \infty)$
(c) $(-\infty,-3) \cup(-3, \infty)$

Exercise 21: (a) odd (b) even (c) neither

Exercise 22:

(a) y-axis
(b) x-axis
(c) none of these
(d) x-axis, y-axis, and the origin
Exercise 23: (a) 33
(b) -6
(c) 62

Exercise 24: $A=-6, B=9$

Exercise 25:

Dimensions of the single coop: $x=15 \mathrm{ft}, y=30 \mathrm{ft}$,
Single coop Area $=450 f t^{2}$

Exercise 26:
(a) Left-End Behavior: Up Left, Right-End Behavior: Down Right
(b) Left-End Behavior: Up Left, Right-End Behavior: Up Right
(c) Left-End Behavior: Down Left, Right-End Behavior: Down Right

Exercise 27: $f(x+1)=x^{2}-x+3$

Exercise 28: $2 x+h-3$

Exercise 29: $(f g)(x)=\frac{-1}{x-5}, x \neq 1$ and $x \neq-5$
Exercise 30: $\frac{13}{4}$

Exercise 31: (a) $(f \circ g)(x)=6 x^{2}-37 x+58 \quad$ (b) $(g \circ f)(x)=6 x^{2}-x-2$

Exercise 32:

Starting with the graph of g, translate 2 units to the right and then translate 5 units up.
In other words, the graph of f is obtained from the graph of g by the following successive transformations:

1. Shift the graph of $g(x)=x^{2}$ two units to the right (obtaining $\left.g(x-2)=(x-2)^{2}\right)$.
2. Shift the graph of $g(x-2)=(x-2)^{2}$ five units up (obtaining $f(x)=g(x-2)+5=(x-2)^{2}+5$).

Exercise 33:

$f(x)=a(x+1)(x-2)\left(x^{2}-2 x+5\right)$ where a is any nonzero real number (We may take $a=1$, if desired.).

Exercise 34:

Possible Rational Zeros: $\pm 9, \pm \frac{9}{2}, \pm \frac{9}{4}, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}$
Zeros of $f:-1, \frac{3}{4}$, and $3 \quad$ Factored form: $f(x)=(x+1)(4 x-3)(x-3)$

Math 1314, Final Exam Review - Key
Exercise 35: Possible Rational Zeros: $\pm 2, \pm \frac{2}{3}, \pm \frac{1}{3}, \pm 1, \pm \frac{1}{2}, \pm \frac{1}{6}$
Exercise 36: $m=-4$

Exercise 37: 18

Exercise 38:

(a) Vertical Asymptotes: $x=5$ and $x=-5 \quad$ Horizontal Asymptote: $y=0$
(b) Vertical Asymptote: $x=-\frac{12}{5} \quad$ Horizontal Asymptote: $y=\frac{3}{5}$
(c) Vertical Asymptote: $x=-1$

Horizontal Asymptote: None

Exercise 39:

$x=0, \quad$ Multiplicity: 1
$x=1, \quad$ Multiplicity: 4
$x=-3$, Multiplicity: 2

Exercise 40: $k=\frac{135}{16}$

Exercise 41:
(a) $f^{-1}(x)=\frac{5-x}{12}$
(b) $f^{-1}(x)=\sqrt[3]{x-4}+1$

Exercise 42: $-\frac{7}{4}$
Exercise 43: $3 x^{3}+6 x^{2}+7 x+29+\frac{60}{x-2}$
Exercise 44: $3 x^{2}-2 x+4+\frac{9 x+14}{x^{2}-3}$

Exercise 45:

Solutions: $\left(-8,-\frac{11}{2}\right)$ and $(5,1)$
Hence, the sum of the x-coordinates of the solutions is -3 and the product of the y-coordinates of the solutions is $-\frac{11}{2}$.

Exercise 46:
Solution: $(-1,3,-5)$
Hence, the sum of the coordinates of the solution is $S=x+y+z=-3$.

Exercise 47: $\log _{3}(r)+\frac{1}{3} \log _{3}(a)+\frac{1}{3} \log _{3}(b)-5 \log _{3}(c)$

Exercise 48:

$x=8^{1 / \mathrm{B}}$
There are many values of B that one may choose, namely $B=1$, or $B=3$, or $B=\frac{3}{2}$, or $B=\frac{5}{2}, \ldots$

Exercise 49:

Domain: $(-3, \infty) \quad$ Range: $(-\infty, \infty) \quad$ Vertical Asymptote: $x=-3$

Exercise 50: $m=5$

Exercise 51:

(a) Solution Set $=\{4\} . \quad$ Sum of solutions $=4$.
(b) Solution Set $=\{6,8\} . \quad$ Sum of solutions $=14$.

Exercise 52:

(a) Solution Set $=\left\{\frac{-2-\ln (2)}{3}\right\}$.
(b) Solution Set $=\left\{\frac{\ln (12)-2 \ln (7)}{\ln (343)}\right\}$.

Exercise 53: $x=-12$
Exercise 54: $x=\frac{1}{4}$
Exercise 55: $\left[\begin{array}{rr}17 & 30 \\ -23 & -9\end{array}\right]$

